Meta Learning for Few-Shot One-Class Classification

نویسندگان

چکیده

We propose a method that can perform one-class classification given only small number of examples from the target class and none others. formulate learning meaningful features for as meta-learning problem in which meta-training stage repeatedly simulates classification, using loss chosen algorithm to learn feature representation. To these representations, we require multiclass data similar tasks. show how Support Vector Data Description be used with our method, also simpler variant based on Prototypical Networks obtains comparable performance, indicating representations directly may more important than choose. validate approach by adapting few-shot datasets scenario, obtaining results state-of-the-art traditional improves upon baselines employed setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meta-Learning for Semi-Supervised Few-Shot Classification

In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corres...

متن کامل

Few-Shot Learning with Meta Metric Learners

Existing few-shot learning approaches are based on either meta-learning or metriclearning, which would suffer if the tasks have varying numbers of classes and/or the tasks diverge significantly. We propose meta metric learning to deal with the limitations of the existing few-shot learning approaches. Our meta metric learning approach consists of two components, task-specific learners that explo...

متن کامل

Meta-SGD: Learning to Learn Quickly for Few Shot Learning

Few-shot learning is challenging for learning algorithms that learn each task in isolation and from scratch. In contrast, meta-learning learns from many related tasks a meta-learner that can learn a new task more accurately and faster with fewer examples, where the choice of meta-learners is crucial. In this paper, we develop Meta-SGD, an SGD-like, easily trainable meta-learner that can initial...

متن کامل

Few-shot Classification by Learning Disentangled Representations

Machine learning has improved state-of-the art performance in numerous domains, by using large amounts of data. In reality, labelled data is often not available for the task of interest. A fundamental problem of artificial intelligence is finding a representation that can generalize to never seen before classes. In this research, the power of generative models is combined with disentangled repr...

متن کامل

One-shot and few-shot learning of word embeddings

Standard deep learning systems require thousands or millions of examples to learn a concept, and cannot integrate new concepts easily. By contrast, humans have an incredible ability to do one-shot or few-shot learning. For instance, from just hearing a word used in a sentence, humans can infer a great deal about it, by leveraging what the syntax and semantics of the surrounding words tells us. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AI

سال: 2021

ISSN: ['2673-2688']

DOI: https://doi.org/10.3390/ai2020012